1. INTRODUCTION
The modern implantology market provides a multitude of various technical solutions, which often only differ from each other in details that are of secondary importance.
Far from wanting to create a classification of the various methods, we will limit ourselves to quickly listing the various groups of endosseous implants most commonly used, leaving out the solutions (plates, full screws etc) (3) that are now disappearing from the daily overview of products. Basically, the most common shape of endosseous implants now used is a hollow cylinder that may have an externally threaded or smooth surface and which may or may not be coated with hydroxyapatite.
Implant heads made up of a hexagon inside or outside the implant body, on which the prosthesis abutment is attached, are a widespread solution. In most cases, the abutment is screwed onto a thread inside the hollow cylinder (10, 11, 12).

2. CHARACTERISTICS OF THE DURAVIT SYSTEM
In this article, we wish to illustrate an endosseous implant that maintains the basic characteristics of the implants described above, but which distinguishes itself due to the simplicity and safety of some aspects of the surgical and implant procedure. The Duravit implant, which we will speak of here, comprises a commercially pure hollow titanium cylinder with an external fine pitch threaded surface, with crests and bevelled grooves that prevent bone micro-fractures during insertion and also ensure excellent load distribution. This characteristic is provided by the implant’s flat base that aids axial load distribution (13). Osteoinductivity is provided by the artificial oxidization that the Duravit implants are subjected to. This type of oxidization increases passivation and makes the implants extremely biocompatible. The thread surface is also finely sanded to reach porosity (80-100 micron) that is the same as that of bone’s anatomical-functional unit. The implant head is square with a bevelled surface. The implant body is 8-10-12-15 mm long and each length is available in 3 different diameters: 3.0, 3.5 and 4.0 mm. This range of sizes thus allows the implants to be used in most cases addressed.

3. SURGICAL TECHNIQUE
We will first examine the surgical technique, evaluating the advantages of the system.
After designing and detaching the flap in depth (9, 10, 13) the implant hole is created, using a countersink reamer to form the bedding for the
implant head and thus evaluating the exact position that the implant will hold on the bone crest (fig. 1). The reduced depth of the site created with the bedding reamer allows for the position or angle of the implant to be easily changed, without causing suffering or sacrificing bone. The creation of the countersink required to house the implant head also produces a bone stop on which the next reamer will stop. The depth reamers of five different lengths are then used, one for each implant length (fig. 2). These are twin-blade reamers with micro-centring guides and two channels along which irrigation solution flows to the reamer point. The twin-blades make the reamers extremely sharp and this allows them to be used at very low speeds (50-70 rotations per minute). This means that internal cooling is not required and improves duration and safety of the reamer. The reamer neck is flared, which is perfectly adapted to the site created by the previous reamer. The advantage of this method is that reamers are used that have both sharp points and bodies and which stop at the set depth. All risks of vertical overuse of instruments, which may cause serious damage in areas close to the mandibular canal, paranasal sinuses and nasal fossae are eliminated. The third reamer used is the implant bedding reamer; in this case too, a low-speed full reamer is used (fig. 3). The Duravit technique uses one reamer for each implant diameter (3.0, 3.5, 4.0, 4.5, 5) as the aim is to make the surgical hole half a millimeters less in diameter than the implant used. The bedding reamer does not use the point to cut and therefore automatically stops at the depth created by the previous reamer. The reamer body has notches which correspond to the length of the various implants so that the surgeon can control work progress. The bedding reamer has three blades, which create a very clear cutting surface and therefore a perfectly cylindrical hole. These reamers have three micro guides that guarantee excellent cooling of the entire working part and the utmost working precision. The last reamer, the tapping reamer (fig. 4) is only used on bone with type I density; this reamer also stops automatically at the set depth and the body has notches that the surgeon can refer to. In bone with different densities, the Duravit implant can be inserted directly into the surgical hole created by the bedding reamer, making use of the implant’s self-threading capacity. The low-speed countrangle (20-30 rotations per minute) is used to insert the implant, after it has been introduced with an implant holder (figs. 5 and 6). The advantages of the Duravit technique are therefore evident with regards to safety (full metal reamers that are sharper, longer-lasting and safer for possible fractures), the lower risk of excessive vertical instrument use, and simplicity due to the use of only 3 or 4
The surgical unflapping procedure used for the Duravit implant is based on the use of a circular scalpel with a guided tip that is applied to the low-speed micromotor. After identifying the implant position with the aid of a surgical template, and searching for the entrance with a probe (the Duravit implant is buried without a cap screw) the scalpel tip is inserted in the implant cavity and is then turned slowly, unflapping the implant. The scalpel will not enter too deeply thanks to the bevelled edge of the implant head. A special characteristic of the Duravit technique is that each surgical step can be carried out using the reducer contringle; the advantages of this procedure are most evident when working in the most posterior areas of the mouth. The unflapping of the implant is followed by a period of maturation for the implant ring which lasts 10-15 days. A surgical Teflon healing cap is used for this purpose, which can be modelled to need and which is pressure-applied (fig. 7).

4. PROSTHETIC TECHNIQUE
Let’s now look at the prosthetic components involved in the Duravit technique to discover the advantages. Duravit is
The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique's flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.

The prosthodontist places a mock implant on the transfer post and pours the extra-hard plaster model, following the usual pouring techniques used for fixed prostheses, with the sole exception of using a soft silicone template around the implant neck, which aids later dental prosthesis manoeuvres, especially if the template has been created with the specific purpose of being easily removed (fig. 8). From this moment on, the prosthodontist will have a common abutment post made from castable material that he can shape, make parallel and adapt, using usual techniques for the case in question. He may, for example, shape an abutment for a cemented prosthesis using the most suitable closing edge (figs 9 and 10); he may attach a threaded cylinder on the top or on the palatal side, onto which the prosthetic crown will be screwed (fig. 11); he may attached a spherical fixing element on the post, to hold an over denture (fig. 12). These are just a few examples of what can be achieved using the castable post, which is the only prosthetic component of the Duravit system. The advantages of the prosthetic technique examined are now evident. The first is the technique’s flexibility that does not require work by a prosthodontist specialised in implant prostheses as normal techniques for the castable abutment post transformation packaged in sterile blister packs, which also include the healing cap and a castable transfer post.

On the master model the dental technician reconstructs an artificial gingiva and uses the impression transfer in the same way as a castable abutment.
are used; the second advantage is the low cost of the system that does not require additional parts (prefabricated prosthetic abutments, screws or other parts). The clinical examples accompanying this article illustrate the technical simplicity of the Duravit method, (figs. 11,13, 14)

SUMMARY
The Duravit implant system is described, analysing surgical and prosthetic procedures; in particular, the article illustrates the simplicity and safety of the surgical procedures used in the Duravit technique, which allows the prosthodontist to use a single prosthetic abutment that is flexible and can be adapted to all the currently used rehabilitation techniques.

KEY WORDS
Duravit implant, Biocompatibility, Perimplant prosthesis.

Bibliography
VERSION OF FEBRUARY 1997 TOMASSO ATTANASIO
Via Scaramuzzino 36 - 88046 Lamezia Terme
Tel. 0968/22863

12 An example of overdenture supported by Duravit implants; image taken three years after implants were fitted.

13 Head of the implant and paradontal tissues perfectly healed.

14 Ceramic crown, taken two years after placement.