INDEX

Catalog presentation ...3
CONNECTION CONEXA ..4
- Unique prosthetic connection ... 4
- Unlocking system .. 5
PROSTHETIC KIT ... 5
PROSTHETIC OPTIONS ... 6
HEALING COMPONENTS .. 7
IMPRESSION COMPONENTS .. 8
PULL-OFF TRANSFER .. 9
FACILITY TRANSFER .. 10
PICK-UP TRANSFER .. 11
TEMPORARY ABUTMENT - PEEK ... 12
TEMPORARY ABUTMENT - TITANIUM 14
TRY- INN ABUTMENT ... 16
CEMENTED-RETAINED RESTORATION 17
TITANIUM ABUTMENT ... 18
CASTABLE ABUTMENT – PLEXIGLASS 20
- Investment .. 22
MULTI-SCAN ABUTMENT ... 23
- Traditional method ... 24
- With cad/cam ... 25
MULTI-USE ABUTMENT .. 26
BRIDGE ... 28
- Impression taking .. 28
- Temporary prosthesis .. 29
- Definitive prosthesis ... 30
EQUATOR SYSTEM .. 32
EQUATOR ... 33
SPHERICAL ANCHOR SYSTEM ... 34
O-BALL ABUTMENT ... 35
BAR SYSTEM ... 37
- Impression taking .. 38
- Definitive prosthesis ... 39
Welcome to this updated edition of DURAVIT prosthetic procedure manual.

B. & B. Dental S.r.l. is an Italian leading company in biomedical field specialized in the development of dental implants and materials for bone regeneration. The experience gained over the years has helped to provide high quality prosthetic implant technologies and innovative materials with affordable prices. Products and techniques are constantly improved, developed and innovated, paying attention to customer satisfaction and to meet customer needs. This is the main goal that B. & B. Dental aims to achieve.

B. & B. Dental produces and markets:
- B&B DENTAL SYSTEM: dental implant system.
- B&B DENTAL GUIDED SURGERY SYSTEM: guided surgery system.
- B&B DENTAL CRESTAL SINUS LIFT: system used for the sinus lift.
- NOVOCOR PLUS and materials for bone regeneration.
- T-BARRIER TITANIUM MEMBRANES.
- T-BARRIER COLLAGEN MEMBRANES.

B. & B. Dental promotes also training courses especially for dentists and dental technicians, during which implant-prosthetic techniques are taught step by step. Knowledge about the specific use of the individual components of the DURAVIT system are provided, as the opportunity to experience directly the wide range of the offered prosthetic solutions.

CATALOG PRESENTATION

The awareness that the realization of a proper prosthesis on implant is a critical step for their long-term life time, has motivated the writing of this demonstrative catalog dedicated to dental technicians.

The catalog describes in details all the prosthetic components of the DURAVIT system and their use. Especially it is designed for being used by clinicians, who have undergone at least basic surgical and in-clinic implant training. All the information have specific illustrations in order to guide professionals through the wide range of options for the impression taking and the following built of the definitive prosthesis. Therefore it explains the essential steps regarding implant planning, surgical and prosthetic procedures.

B. & B. Dental has an interest to keep up-dated each doctor over the latest trends and treatment techniques about implants in order to provide the most simple implant solution even in case of complex cases.
CONEXA
THE REVOLUTIONARY CONNECTION

PLATFORM SWITCHING
- Reduction of bone loss.
- Long term esthetic stability.
- Perfect bacterial seal.

INTERNAL HEXAGON
The hexagon enhances the resistance to torsional loads and allows an easy transfer of the abutment position from the laboratory to the dental office.

CONICAL CONNECTION “MORSE TAPER 5°”
- Cold weld seal.
- Elimination of micro-movements.
- Elimination of unscrewing.

UNIQUE PROSTHETIC CONNECTION
Thanks to the unique prosthetic connection (hole diameter 3 mm), the range is compatible with all prosthetic implants 3P, EV and WIDE, regardless of the stump or pillar chosen and the diameter of the implant.

PROSTHETIC SCREW
The only function is to bring in total connection the abutment and the implant.
It is not subjected to loads, eliminating the risk of breakage.
UNLOCKING SYSTEM

The morse taper is created by the friction between two conical surfaces (implant and abutment), that combined with the push and pressure applied in the insertion, locks them. The locking can be deleted only using an extractor screw “EXTRACTOR” (Ref. INN-6060).

1. Unscrew the prosthetic.

2. Insert the extractor screw inside the abutment by using the hexagonal driver.

3. Screw clockwise the extractor screw until the abutment comes out.

4. Once the abutment comes out unscrew the extractor.

PROSTHETIC KIT
Ref. KITPROTESICO

TORQUE RATCHET
Ref. 00376DIN

SPHERICAL SCREW DRIVERS
Ref. INN-00637

EXTRACTOR
Ref. INN-6060

MANUAL DRIVERS
Ref. INN-00604

PROSTHETIC SCREW DRIVER
Ref. INN-61000 (short)
Ref. INN-61000L (long)
PROSTHETIC OPTIONS

CEMENT-RETAINED RESTORATION

The cemented implant is defined as an intermediate element of cemented prosthesis (abutments), screwed directly on the implants.

Advantages:
- Improved esthetics due to compliance with the emergence profile;
- The concrete sealant facilitates the passivation of the structure;
- Easy occlusal balancing.

Disadvantages:
- Difficulty in the removal of the prosthesis;
- Risk that the concrete comes out below the gum line.

SCREW-RETAINED RESTORATION

The screwed implant is defined as an intermediate element of screwed prosthesis (abutments), in turn, screwed directly on the implant.

Advantages:
- Easy disassembly of the prosthesis;
- Connection through anatomical pillars;
- No use of sealant cements.

Disadvantages:
- Anatomical emergence profile sometimes difficult to achieve;
- Projection of the screws on the occlusal surface;
- Difficult to control the liability.

ATTACHMENT-RETAINED RESTORATION

There are several indications for overdenture treatment in connection with implant therapy. Functionality, esthetics, phonetics and hygienic requirements in certain clinical situations require the use of the overdenture as an option of treatment.

Indications for overdenture treatment:
- An unfavorable jaw relation which makes treatment with a fixed bridge restoration difficult;
- Esthetic problems, e.g. the need for lip support in the upper jaw;
- Patient's dissatisfaction with removable denture due to oral irritations and/or loss of bone for denture fixation
- Edentulous patients with a cracked palate;
- Economic constraints.
HEALING COMPONENTS

TIGHTENING:
Insert the healing screw into the implant and tighten with only light finger force.

COVER SCREW
It is provided in the implant package. Use it when you want to cover completely the implant after its insertion. The implant will be reopened 3-6 months later, followed by the use of healing screw.

HEALING SCREWS Ø5
INDICATED FOR ANTERIOR AREA
These components are used to rehabilitate soft tissue on the implant in order to insert the final prosthetic abutment later on.

HEALING SCREWS Ø6
INDICATED FOR POSTERIOR AREA
These components are used to rehabilitate soft tissue on the implant in order to insert the final prosthetic abutment later on.
IMPRESSION COMPONENTS

PULL-OFF TRANSFER (CLOSED TRAY TECHNIQUE)

Made of plastic and single-use only. It provides an impression taking that is easy and fast for each patient.

Each package contains 3 pieces. Ref. INN-00306

The transfer has to be combined with the analog. Ref. INN-00585

TRANSFER FACILITY (CLOSED TRAY TECHNIQUE)

It is packaged in 3 pieces. It ensures optimal fit and precise impression taking in cases of large disparallelism.

Each package contains: 1 plastic cap, 1 screw and 1 metal transfer.

Each package of plastic cap contains 2 pieces.

The transfer has to be combined with the analog INN-00585, as shown above.

PICK-UP TRANSFER (OPEN TRAY TECHNIQUE)

The pick-up transfers ensures an optimal fit and a precise impression taking for each patient.

The package contains: 1 pick-up transfer and 1 short pick-up screw. It is available even the long pick-up screw.

The transfer has to be combined with the analog INN-00585, as shown above.
PULL-OFF IMPRESSION TRANSFER
CLOSE TRAY TECHNIQUE

1. Clean the internal connection of the implant thoroughly from blood, tissue, etc. prior to the impression procedure.

2. Position the transfer in the analog and push until you feel the tactile response of engagement.

3. Make little lateral movements to verify the correct insertion of the transfer.

4. Take the impression using an elastomeric impression material (polyvinyl siloxane or polyether rubber).

5. Once the material is cured, carefully remove the tray.

6. The transfer remains in the impression material automatically when it is pulled off from the tray.

7. A gingival mask should always be used to ensure that the emergence profile of the crown is optimally contoured.

8. Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).

Note: Due to its low tensile strength, hydrocolloid is not suitable for this application.
FACILITY TRANSFER
CLOSE TRAY TECHNIQUE

Place the facility transfer accurately into the implant and tighten the guide screw by hand or using the hexagonal screwdriver.

Place the plastic impression cap on the top of the transfer and push the impression cap in an apical direction until it clicks.

The impression cap is now firmly seated on the facility transfer.

Take the impression using an elastomeric impression material (polyvinyl siloxane or polyether rubber).

Note: Due to its low tensile strength, hydrocolloid is not suitable for this application.

Since the material is cured, carefully remove the tray.

The impression cap remains in the impression material.

Unscrew and remove the facility transfer and send it together with the impression tray to the dental technician.

Mount the impression transfer on the analog using the transfer screw.

Place the transfer in the tray and push until you feel the tactile response of engagement. It is now firmly seated on the impression cap.

A gingival mask should always be used to ensure that the emergence profile is optimally contoured.

Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).
PICK-UP TRANSFER

OPEN TRAY TECHNIQUE

1. Clean the internal connection of the implant thoroughly from blood, tissue, etc. prior to the impression procedure.

2. Place the pick-up transfer accurately into the implant and by hand (Fig. A) or using the hexagonal screwdriver tighten the pick-up screw.

3. Make perforations in the custom-made impression tray.

4. Take the impression using an elastomeric impression material (polyvinyl siloxane or polyether rubber).

5. Once the material is cured, loosen the pick-up screws and remove the tray.

6. The pick-up transfer remains automatically in the impression material.

7. Reposition and fix the analog in the impression using the guide screw. To avoid inaccuracies when connecting, the analog must be positioned exactly in line with the grooves of the analog before screwing in.

8. A gingival mask should always be used to ensure that the emergence profile of the crown is optimally contoured. Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).
TEMPORARY ABUTMENT - PEEK

INTENDED USE
- Immediate load.
- Individual soft tissue management for esthetic cases.
- Screw- or cement-retained temporary crowns.
- Peek abutment has been designed as temporary abutment, easily customized by the clinician or in the laboratory by the dental technician.
- Easy to customize by the doctor during the surgery as well as by the technician in laboratory.

CHARACTERISTICS
- Modifications of peek material can be realized immediately, easily and quickly.
- Easy-to-achieve esthetics due to tooth-colored and metal free.
- Conexa connection

NOTE
Maximum 121° sterilizable.

IMPORTANT NOTE
The correct position of angled abutments can be checked considering that the external hexagon of the driver is in phase with the internal hex.

TIGHTENING:
The tightening of the prosthetic screw is realized with the 1.27 hex screwdriver and torque ratchet. For the final seating are recommended torques of 25 Ncm.

PEEK KIT
000.08
The box contains 1 pc for each code.

PEEK STRAIGHT ABUTMENTS
Complete with prosthetic screw

PEEK 15° ANGLED ABUTMENTS
Complete with prosthetic screw

PEEK 25° ANGLED ABUTMENTS
Complete with prosthetic screw

PROSTHETIC SCREW
INN-6050
Place the pre-selected abutment inside the analog.

Hand-tighten the temporary abutment using the hexagonal screw.

Individualize the temporary abutment.

Use a standard procedure to fabricate the cement-retained single crown (e.g. grind out a prefabricated plastic tooth).

Coat the internal configuration of the crown with temporary cement and cement it on the temporary abutment.

Cement the superstructure to the abutment and remove superfluous cement.
TEMPORARY ABUTMENTS - TITANIUM

User-adjustable temporary abutments in titanium.

INTENDED USE
- User-adjustable both by doctor and technician.
- Anterior and posterior area
- Non-rotating abutments are used for:
 - Screw- or cement-retained temporary crowns;
 - Cement-retained temporary bridges.
- Rotating abutments are used for screw-retained temporary bridges.

CHARACTERISTICS
- Narrow diameter for interdental spaces.
- Precise fit and high stability due to titanium material.
- Conexa connection.

NOTE
Do not use for longer than 180 days.
Place temporary restorations out of occlusion.
The temporary abutment can be shortened vertically no more than 6 mm with usual tools and technique. The devices are provided non-sterile and they are for single use only. Abutment can be steam sterilized (134°C/5 Min).

1. Fabricate the master cast including a gingival mask.
2. Make a silicon key over the full wax-up in order to define the optimal shape of the customized temporary abutment.
3. For optimal esthetic planning, model a full anatomical wax-up.
4. Place the Try-Inn abutment on the implant or implant analog. This will aid in checking the gingival height.

NON-ROTATING STRAIGHT ABUTMENTS
Complete with prosthetic screw

ROTATING STRAIGHT ABUTMENTS
Complete with prosthetic screw
Mount the temporary abutment on the master cast or in patient’s mouth. Mark the appropriate heights according to the individual situation.

Sandblast and coat with opaque. Temporarily seal the screw channel.

Press the silicon key on the model and use a standard technique to fabricate the temporary crown.

Polish and clean the temporary restoration. Reopen the screw channel.

Shorten the temporary abutment and then check the heights with the silicone key previously cut.

Fill the silicon key with acrylic resin.

Remove excess acrylic.

Place the temporary restoration on the implant and tighten the screw with torques of 25 Ncm.
TRY-INN KIT ABUTMENTS

Try-Inn kit abutments helps the dental technician to select the most suitable abutment, based on the inclination and the transmucosal height of the implant that has been inserted.

Try-Inn abutments are color-coded, well-marked on the holder and easily readable.

The box contains 3 pcs for each code (see table beside) for a total of 27 abutments.

Place the Try-Inn abutment on the implant (intra-oral use) or on the implant analog (extra-oral use).

This will aid in checking the gingival height (H.1, H.2 e H.3 mm) and axial alignment of the potential restoration (0°, 15° e 25°).

Try-Inn abutments are fabricated in sterilizable polymer material.
Easy to handle thanks to the plastic holder.

Turn the plastic kit upside down to read the corresponding ø5 titanium abutment.

<table>
<thead>
<tr>
<th></th>
<th>0° Ref.</th>
<th>15° Ref.</th>
<th>25° Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>PC107.01/1</td>
<td>PC107.02/1</td>
<td>PC107.03/1</td>
</tr>
<tr>
<td>H2</td>
<td>PC107.01/2</td>
<td>PC107.02/2</td>
<td>PC107.03/2</td>
</tr>
<tr>
<td>H3</td>
<td>PC107.01/3</td>
<td>PC107.02/3</td>
<td>PC107.03/3</td>
</tr>
</tbody>
</table>
CEMENTED-RETAINED RESTORATION

TITANIUM ABUTMENTS Ø 5
(CEMENT-RETAINED RESTORATION)

Ø 5 indicated for anterior area.

They are available in 3 heights (H. 1, H. 2, H. 3 mm) according to the gingiva, mimicking optimal preparations of natural teeth, which provide the opportunity to create esthetics for all teeth.

The package contains: 1 abutment and 1 prosthetic screw.

<table>
<thead>
<tr>
<th>0° Ref.</th>
<th>15° Ref.</th>
<th>25° Ref.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>INN-2000</td>
<td>INN-2015</td>
<td>INN-2025</td>
</tr>
<tr>
<td>H2</td>
<td>INN-2001</td>
<td>INN-2016</td>
<td>INN-2026</td>
</tr>
<tr>
<td>H3</td>
<td>INN-2002</td>
<td>INN-2017</td>
<td>INN-2027</td>
</tr>
<tr>
<td>H4</td>
<td>INN-2004</td>
<td>INN-2018</td>
<td>INN-2028</td>
</tr>
<tr>
<td>H5</td>
<td>INN-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>INN-2006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TITANIUM ABUTMENTS Ø 6
(CEMENT-RETAINED RESTORATION)

Ø 6 indicated for posterior area.

They are available in 3 heights (H. 1, H. 2, H. 3 mm) according to the gingiva, mimicking optimal preparations of natural teeth, which provide the opportunity to create esthetics for all teeth.

The package contains: 1 abutment and 1 prosthetic screw.

<table>
<thead>
<tr>
<th>0° Ref.</th>
<th>15° Ref.</th>
<th>25° Ref.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>INN-2030</td>
<td>INN-2065</td>
<td>INN-2075</td>
</tr>
<tr>
<td>H2</td>
<td>INN-2031</td>
<td>INN-2066</td>
<td>INN-2076</td>
</tr>
<tr>
<td>H3</td>
<td>INN-2032</td>
<td>INN-2067</td>
<td>INN-2077</td>
</tr>
</tbody>
</table>
TITANIUM ABUTMENT CEMENTED RESTORATION

1. Fabricate the master cast including a gingival mask.

2. For optimal esthetic planning, model a full anatomical wax-up.

3. Make a silicone key over the full wax-up in order to define the optimal shape of the customized titanium abutment.

4. Place the Try-Inn abutment on the implant or implant analog.

 This will aid in checking the gingival height (H.1, H.2, H.3 mm) and axial alignment of the potential restoration (0°, 15° and 25°).

 (See page 16)

5. Place the pre selected abutment inside of the analog.

6. Modify the abutment as required.

7. Sandblast the modified abutment.

 Once the ceramic cap will be cemented, the sandblasting increase the mechanical attach.

8. Wax an individual resin cap onto the abutment.
Check the wax-up with the silicone key.

Gently divest the customized abutment with ultrasound, water jet, pickling acid or a glass fiber brush.

Sandblast the metal crown in order to create a mechanical attach with the veneer.

Position the abutment in the implant and tighten the screws to 25 Ncm using the hexagonal screwdriver along with the torque ratchet.

Contour a wax model according to the anatomical circumstances of the individual cast.

Investment. Cast the framework in the conventional manner.

Verify that the metal crown fits precisely on the customized abutment.

Note: The long term success of the prosthetic work depends on the accurate fit of the restoration. The entire procedure will have to be repeated, if casting errors occur.

Veneer the superstructure.
CASTABLE ABUTMENT - PLEXIGLASS

INTENDED USE
Cement-retained bridges via mesostructure (custom abutment technique).

CHARACTERISTICS
- Easy-to-achieve esthetics due to individual realization of the emergency profile and adaptation to the margin of the gingival contour.
- Superfluous cement easily removable by raising the cement margin using an individually designed mesostructure.

STRAIGHT ABUTMENTS
Complete with prosthetic screw

15° ANGLED ABUTMENTS
Complete with prosthetic screw

25° ANGLED ABUTMENTS
Complete with prosthetic screw

IMPORTANT NOTE
- The use of castable abutments for Duravit implant system is not advisable, due to the difficulty to obtain a perfect conical fitting between implant and abutment.
- Use the castable abutment only in cases of extreme disparallelism.
- Do not use for a single crown.

TIGHTENING:
The tightening of the prosthetic screw is realized with the 1.27 hex screwdriver and torque ratchet. For the final seating are recommended torques of 25 Ncm.

PROSTHETIC SCREW
INN-6050
1. Fabricate the master cast including a gingival mask.

2. For optimal esthetic planning, model a full anatomical wax-up. Make a silicone key over the full wax-up in order to define the optimal shape of the abutment.

3. Place the pre selected abutment inside the analog.

4. Modify the abutment as required.

5. Invest the customized abutment.

6. Sandblast the modified abutment.

7. Wax an individual resin cap onto the abutment. Investment of the resin cap. Cast the framework in the conventional manner.

8. Sandblast the metal crown in order to create a mechanical attach with the veneer. Veneer the superstructure.
In order to avoid overflow of the cast-on alloy, clean the copings thoroughly prior to investment (removal of wax particles, insulating agents with a cotton pellet or brush moistened with alcohol).

Ensure that there is no wax on the delicate margin. The use of investment materials for rapid heating methods (speed investment materials) is not recommended.

When processing the investment material, follow the manufacturer’s instructions. Observe the recommended mixing ratio and preheating time exactly.

Make sure the screw channel and the internal configuration of the copings are filled with investment material from the bottom to the top in order to avoid air bubbles (see images).
MULTI-SCAN ABUTMENT

INTENDED USE
- Cemented-retained restoration.
- Screw-retained restoration.
- Single and multiple crowns

CHARACTERISTICS
- Possibility of creating a transmucosal profile customized for every single patient.
- NIMETIC CEM (3M Espe), PANAVIA 21 (Kuraray Medical Inc.) are the materials recommended for bonding the prosthetic manufacture.
- Conexa connection

TIGHTENING:
The tightening of the prosthetic screw is realized with the 1.27 hex screwdriver and torque ratchet. For the final seating are recommended torques of 25 Ncm.

The portion of the abutment can be customized as follows:

WITH TRADITIONAL METHOD
Utilization of a pre-fabricated castable placed on the abutment, that need to be adjusted and modeled with wax and/or acrylic, and fabrication of the portion of customized abutment through fusion.

WITH CAD/CAM
Scanbody allows to digitally get the abutment position on the model. The customized modelling includes a dedicated software and a laboratory working with drilling machine (CAM). Interface, link and B&B Dental scanbody are available for the following libraries:

NON-ROTATING MULTI SCAN
Complete with prosthetic screw

4 mm

$0,5 \text{ mm}$

INN-00652

ROTATING MULTI-SCAN
Complete with prosthetic screw

4 mm

$0,5 \text{ mm}$

INN-00651

PROSTHETIC SCREW

INN-6050
TI BASE

CEREC® (Linea L)

INTENDED USE
- Cemented-retained restoration.
- Screw-retained restoration.

CHARACTERISTICS
- Titanium base.
- Completely customized prostheses.
- Use of CAD/CAM technology for the production of zirconium abutments that has to be fixed on the central pillar.
- Conexa connection.

CEREC BASE
Complete with prosthetic screw

| INN-00655 | INN-00655/2 | INN-00655/3 |

NOTE:
Scanbodies are included in ScanPost and TiBase for the implant optical acquisition. The grey cap is used with omnicam system. The white cap is used with bluecam system. 2 different connections are available: S (code: 6431295) and L (code: 6431303).

UCLA ABUTMENT

INTENDED USE
- Ideal for overcasting.
- Cemented-retained restoration.
- Screw-retained restoration.
- Use for single or multiple crowns.

CARACTERISTICS
- Made of gold.
- Completely customizable.
- Model anatomically the gingiva.
- Conexa connection.

UCLA ABUTMENT
Complete with prosthetic screw

| INN-6048 |

PROSTHETIC SCREW

| INN-6050 |
MULTI-SCAN ABUTMENT
SCREWABLE RESTORATION
WITH THE TRADITIONAL METHOD

1. For optimal esthetic planning, model a full anatomical wax-up.

2. Make a silicone key over the full wax-up in order to define the optimal shape of the customized titanium abutment.

3. Place the multi-scan abutment on the analog and hand-tighten the screw using the hexagonal screwdriver. Place the castable cylinder onto the multi-scan abutment.

4. Contour a wax model according to the anatomical circumstances of the individual cast. Check the wax-up with the silicone key. Check that the hole of the prosthetic screw is free of residues.

5. Casting and divestment. Cast the framework in the conventional manner.

6. Verify that the metal crown fits precisely on the customized abutment. Sandblast the metal crown in order to create a mechanical attach with the veneer. Veneer the superstruture.

7. Cement the superstructure to the abutment. Remove superfluous cement.

8. Position the abutment in the implant and tighten the screws to 25 Ncm using the hexagonal screwdriver along with the torque ratchet.
Fabricating the scan model.

Fabricate a master cast with the corresponding analog.

Option A: Fabricate a duplicate model made from scan plaster.
Option B: Cast the master cast directly by using scan plaster.

For optimal esthetic planning, model a full anatomical wax-up and scan it too.

To determine the spacing available for further processing, the silicone key can be viewed on-screen.

Put the scan model in the laser scanner.

Shape the abutment on screen, using the software.

Based on the design data, the customized structure is manufactured by a melling center.

Check the zirconium framework.

Veneer the superstructure.

Cement the zirconium cap to the multi-scan abutment.

Remove superfluous cement.

Tighten the prosthetic screw to 25 Ncm using the hexagonal screwdriver along with the torque ratchet.
MULTI-USE ABUTMENTS

INTENDED USE
- Screwed bridges
- “All-on-four” and “All-on-six” prosthesis
- Bar-retained overdentures.

STRAIGHT MULTI-USE ABUTMENT
The straight multi-use abutment has a conical top with an external hexagon, that allows to tighten it by mean of a multi-use driver (manual or ratchet connection).

ANGLED MULTI-USE ABUTMENT
The 17° and 30° angled multi-use abutments help to achieve parallelism for non-parallel implants. They are can be easily connected through a multi-use holder (Ref. 023MUA) and then fixed with a prosthetic screw.

IMPORTANT NOTE
The correct position of angled abutments can be checked considering that the external hexagon of the driver is in phase with the internal hex.

WARNING: Implant with a length of 6,5 mm requires the use of a specific prosthetic screw, shorter than the standard one.

TIGHTENING:
The tightening of the prosthetic screw is realized with the 1.27 hex screwdriver and torque ratchet. For the final seating are recommended torques of 15 Ncm.

STRAIGHT ABUTMENTS
INN-4750/1
INN-4750/2
INN-4750/3

17° ANGLED ABUTMENTS
Complete with prosthetic screw
INN-1760/1
INN-1750/2
INN-1750/3

30° ANGLED ABUTMENTS
Complete with prosthetic screw
INN-3050/1
INN-3050/2
INN-3050/3

PROSTHETIC SCREW
INN-5146
SHORT INN-5146S
IMPORTANT NOTE

Il serraggio della vite protesica va effettuato con cricchetto dinamometrico e chiave protesica 1,27. Vengono raccomandati torques di 15 Ncm per l’alloggiamento finale.
Position the multi-use abutments in the implants.
Tighten them to 25 Ncm using the screw driver (ref. INN- 00637) along with the torque ratchet.

Take the impression using an elastomeric impression material (polyvinyl siloxane or polyether rubber).
Note: Due to its low tensile strength, hydrocolloid is not suitable for this application.

Unscrew close tray transfers from the mouth and send all to the dental technician.

Screw the transfer onto the multi-use analog.
Push the transfer and analog in the tray. It is now firmly seated in the impression tray.

Screw the healing caps onto the multi-use abutments in order to keep opened the soft tissues until the final restoration is inserted.

A gingival mask should always be used to ensure that the emergence profile of the crown is optimally contoured.
Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).
TEMPORARY PROSTHESIS

9. For optimal esthetic planning, model a full anatomical wax-up.

10. Make a silicon key over the full wax-up in order to fine the optimal shape of the customized temporary abutment.

11. Place the temporary cylinder on the multiuse analog. This will aid in checking the gingiva height.

12. Shorten the temporary abutment and then check the heights with the silicone key previously cut.

13. Sandblast and coat with opaque.

14. Fill the silicon key with acrylic resin and press it on the model and use a standard technique to fabricate the temporary crown.

15. Remove excess acrylic. Polish and clean the temporary restoration. Reopen the screw channel.

16. Place the temporary restoration on the implant and tighten the screw with torques of 25 Ncm.
DEFINITIVE PROSTHESIS

9. Fabricate the master cast including a gingival mask.

10. Place the castable cylinder on the analogs and hand tighten the occlusal screws using the screw driver.

Note: Do not over tighten the castable cylinder.

11. Make a silicone key over the full wax-up in order to define the optimal shape of the customized titanium abutment.

12. Shorten the castable cylinder to the height of the occlusal floor according to the individual situation.

13. Fabricate the superstructure on the abutments using standard modeling methods.

Make sure that the wax layer on the abutment is sufficiently thick (at least 0.7 mm).

14. Check the wax-up with the silicone key.

15. Check that the wax framework of the bridge is absolutely tension-free before investing the framework.

This is accomplished according to commonly known bridge techniques.

16. For optimal esthetic planning, model a full anatomical wax-up.

Surgical procedures Laboratory procedures
Invest the bridge framework according to standard methods without using wetting agents.

Control for tension-free fitting on the master cast.
If the bridge is not tension-free and wiggles, cut the bridge and resplint it tension free.

Do an additional try-on of the tension-free fit of the framework in the patient’s mouth.

Tighten the occlusal screws to 25 Ncm, using the hexagonal screwdriver along with the torque ratchet.

Gently divest the customized abutment with ultrasound, water jet, pickling acid or a glass fiber brush.

Sandblast and coat the superstructure.

Veneer the superstructure.
EQUATOR ANCHOR SYSTEM

COMPLETE SET INCLUDES:
1 Anchor abutment
1 Stainless steel housings
1 Retentive caps - violet “strong”
1 Retentive caps - white “standard”
1 Retentive caps - pink “soft”
1 Retentive caps - yellow “extra-soft”
1 Processing cap - black

1 METAL INSERTION TOOL FOR CAPS 185IAC
1 BLUE PLASTIC “MULTIUSE” INSERTION TOOL 124ICP
1 SQUARE DRIVER CONNECTOR FOR TORQUE 760CE
1 OT-EQUATOR SQUARE SCREWDRIVER FOR IMPLANT ABUTMENT (SQUARE 1,25MM) 774CHE

STAINLESS STEEL HOUSINGS
141CAE (2 pieces)

RETENTIVE CAPS STRONG
140CEV (4 pieces)

RETENTIVE CAPS STANDARD
140CET (4 pieces)

RETENTIVE CAPS SOFT
140CER (4 pieces)

RETENTIVE CAPS EXTRASOFT
140CEG (4 pieces)

PROCESSING CAPS - BLACK
140CEN (4 pieces)

IMPRESSION COPINGS
144MTE (2 pieces)

LABORATORY ANALOGS
144AE (2 pieces)

PULL-OFF IMPRESSION COPING
044CAIN (2 pieces)
Select the height of the Equator abutment.
The top margin of the abutment should be 1 mm above the mucosa.
Tighten the abutment to 25 Ncm using the ratchet along with the torque control device.

Take the impression utilizing the mucodynamic technique (vinyl polysiloxane or polyether rubber).
Send the impression to the dental laboratory.

A gingival mask should always be used to ensure that the emergence profile of the crown is optimally contoured.
Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).

The dental technician returns the completed Equator overdenture to the doctor’s office for final placement.

Place the impression copings on the Equator abutments.
Place the analogs inside the impression copings.
Place the denture caps with the black processing males onto the Equator abutments, or the analogs in the master cast.
SPHERICAL ANCHOR SYSTEM

INTENDED USE
Dentures retained by implants in the mandible and maxilla.

CHARACTERISTICS
- Simple.
- Divergence compensation up to 20° between two implants.
- Minimum height for limited occlusal space.
- Reliable.
- Excellent long-term performances due to high wear on resistance of components.

SPHERICAL ANCHORS

<table>
<thead>
<tr>
<th>Ø 1.8</th>
<th>Ø 1.8</th>
<th>Ø 1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>INN-1040</td>
<td>INN-1041</td>
<td>INN-1042</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø 2.3</th>
<th>Ø 2.3</th>
<th>Ø 2.3</th>
<th>Ø 2.3</th>
<th>Ø 2.3</th>
<th>Ø 2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INN-1060</td>
<td>INN-1061</td>
<td>INN-1062</td>
<td>INN-1064</td>
<td>INN-1065</td>
<td>INN-1066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø 2.5</th>
<th>Ø 2.5</th>
<th>Ø 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>INN-1050</td>
<td>INN-1051</td>
<td>INN-1052</td>
</tr>
</tbody>
</table>

O-BALL ANALOG

| INN-00621 | INN-00624 |

TRANSFERT

| INN-00623 | INN-00625 |

| INN-00622 | INN-00626 |
Ø 1.8 METAL HOUSINGS
The prosthetic housings are available in three different retentions, achieved by using the appropriate silicon o-ring and metal housing.

Ø 1.8 PLASTIC CAPS AND METAL HOUSING
NOTE: The metal housing is sold individually, without having a plastic cap inside.

Ø 2.3 PLASTIC CAPS AND METAL HOUSING
NOTE: The metal housing contains inside the plastic cap.

Ø 2.3 ONLY PLASTIC CAPS
6pcs each package

Ø 2.5 PLASTIC CAPS AND METAL HOUSING
NOTE: The metal housing is sold individually, without having a plastic cap inside.
Select the height of the O-ball abutment.
The top margin of the abutment should be 1 mm above the mucosa.
Tighten the abutment to 25 Ncm using the ratchet along with the torque control device.

Place the metal housing onto the spherical anchors.

Take the impression utilizing the mucodynamic technique (vinyl polysiloxane or polyether rubber).
Send the impression to the dental laboratory.

Once the material is cured, carefully remove the tray.
The impression cap remains in the impression material.

A gingival mask should always be used to ensure that the emergence profile of the crown is optimally contoured.
Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).

Place the denture caps onto the O-ball abutments, or the analogs in the master cast.

The dental technician returns the completed o-ball overdenture to the doctor’s office for final placement.
Select the height of the Equator abutment.
The top margin of the abutment should be 1 mm above the mucosa.
Tighten the abutment to 25 Ncm using the ratchet along with the torque control device.

Place the protection disc first and then the metal cap.

Hollow out the existing denture base in the areas of the denture caps.

The dental technician returns the completed o-ball overdenture to the doctor’s office for final placement.

Select the height of the O-Ball abutment.
The top margin of the abutment should be 1 mm above the mucosa.
Tighten the abutment to 25 Ncm using the ratchet along with the torque control device.

Place the protection disc first and then the metal cap.

Hollow out the existing denture base in the areas of the denture caps.

The dental technician returns the completed o-ball overdenture to the doctor’s office for final placement.
BAR SYSTEM

OT BAR

- CASTABLE BAR
 - (2 pcs)
 - 0220BB

- GINGIVAL CONNECTOR
 - (OPTIONAL)

PLASTIC CLIP

- POSITIONING CLIP A
 - (4 pcs)
 - 023CPA

- POSITIONING CLIP B
 - (4 pcs)
 - 02CPB

- CASTABLE BOX
 - (4 pcs)
 - 025CPB

- MEDIUM RETENTION
 - (4 pcs)
 - 027CRG

- SOFT RETENTION
 - (4 pcs)
 - 026CRR

INSTRUMENTS

- SHORT DRIVER
 - 00578/S

- TOOL FOR INSERTING CLIP
 - 029OIC

- KEY FOR PARALLELOMETER
 - 028OCP
Select the height of the multi-use abutment. The top margin of the abutment should be 1 mm above the mucosa. Tighten the abutment to 25 Ncm using the ratchet along with the torque control device.

Place the impression post accurately into the implant and tighten the transfer screw by hand (Fig. A) or using the hexagonal screwdriver.

Take the impression using an elastomeric impression material (polyvinyl siloxane or polyether rubber).

Note: Due to its low tensile strength, hydrocolloid is not suitable for this application.

Fix the analog in the impression using the transfer screw.

A gingival mask should always be used to ensure that the emergence profile of the crown is optimally contoured.

Fabricate the master cast using standard methods and type 4 dental stone (DIN 6873).
Place the castable cylinder on the analogs and hand tighten the occlusal screws using the screwdriver.
Shorten the castable cylinder according to the individual situation.

Use a residue-free burn-out plastic to fix the bar segments to the castable cylinder.

Check that the wax framework of the bar is absolutely tension-free before investing the framework. This is accomplished according to commonly known techniques.

Do an additional try-on of the tension-free fitting of the framework in the patient’s mouth.

Fabricate the bar by using the parallelometer.
Note: The space between the bar and the gingiva must be at least 2 mm.

Tighten the occlusal screws to 25 Ncm using the hexagonal screwdriver along with the torque ratchet.